Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height
نویسندگان
چکیده
Maize is a globally important food, feed crop and raw material for the food and energy industry. Plant architecture optimization plays important roles in maize yield improvement. PIN-FORMED (PIN) proteins are important for regulating auxin spatiotemporal asymmetric distribution in multiple plant developmental processes. In this study, ZmPIN1a overexpression in maize increased the number of lateral roots and inhibited their elongation, forming a developed root system with longer seminal roots and denser lateral roots. ZmPIN1a overexpression reduced plant height, internode length and ear height. This modification of the maize phenotype increased the yield under high-density cultivation conditions, and the developed root system improved plant resistance to drought, lodging and a low-phosphate environment. IAA concentration, transport capacity determination and application of external IAA indicated that ZmPIN1a overexpression led to increased IAA transport from shoot to root. The increase in auxin in the root enabled the plant to allocate more carbohydrates to the roots, enhanced the growth of the root and improved plant resistance to environmental stress. These findings demonstrate that maize plant architecture can be improved by root breeding to create an ideal phenotype for further yield increases.
منابع مشابه
Involvement of reactive oxygen species in lanthanum-induced inhibition of primary root growth
Although lanthanum (La) has been used as an agricultural plant growth stimulant for approximately 50 years, high concentrations are toxic to plants. Despite significant advances in recent years, the mechanisms underlying the effects of La on root system development remain unclear. Here, we report that a high concentration of La inhibits primary root (PR) elongation and induces lateral root (LR)...
متن کاملOverexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize
Phosphate (Pi) limitation is a constraint for plant growth and development in many natural and agricultural ecosystems. In this study, a gene encoding Zea mays L. protein phosphatase 2A regulatory subunit A, designated ZmPP2AA1, was induced in roots by low Pi availability. The function of the ZmPP2AA1 gene in maize was analyzed using overexpression and RNA interference. ZmPP2AA1 modulated root ...
متن کاملAluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots
The objective of this study was to investigate Al(3+)-induced IAA transport, distribution, and the relation of these two processes to Al(3+)-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L(-1) IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, ...
متن کاملAuxin and the response of pea roots to auxin transport inhibitors: morphactin.
The auxin transport inhibitor methyl-2-chloro-9-hydroxyfluorene-9-carboxylate (CFM), a morphactin, inhibits negative geotropism, causes cellular swelling, and induces root hair formation in roots of intact Pisum sativum L. seedlings. In excised pea root tips, CFM inhibits elongation more than increase in fresh weight (swell ratio = 1.3 at 20 mum CFM). CFM growth inhibition was expressed in the ...
متن کاملExtracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport.
Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred ...
متن کامل